Lecture 16 Sampling Distribution of The Sample Variance

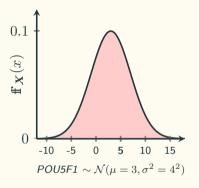
BIO210 Biostatistics

Xi Chen

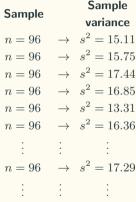
Fall, 2025

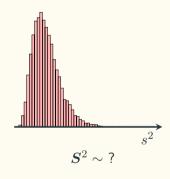
School of Life Sciences
Southern University of Science and Technology

Sampling Distribution of The Sample Variance



$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (\boldsymbol{X}_i - \bar{\boldsymbol{X}})^2 \qquad \vdots \qquad \vdots$$





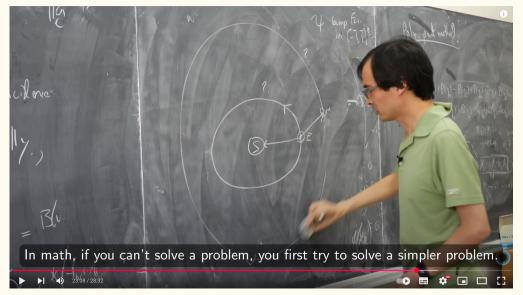
Sampling distribution of the sample variance

Figuring Out The Distribution of S^2

Task: We draw a sample of size n (X_1, X_2, \cdots, X_n) from a population $(X \sim \mathcal{D})$, where $\mathbb{V}\mathrm{ar}(X) = \sigma^2$, we want to figure out:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} = \frac{1}{n-1} \left[(X_{1} - \bar{X})^{2} + (X_{2} - \bar{X})^{2} + \dots + (X_{n} - \bar{X})^{2} \right]$$

Problem Solving Advice By Terrence Tao



Start With The Special Case

Simplify: Let X_1, X_2, \cdots, X_n be i.i.d. random variables from a normal population $\mathcal{N}(\mu, \sigma^2)$

$$S^2 = \frac{1}{n-1} \Big[(X_1 - \bar{X})^2 + (X_2 - \bar{X})^2 + \dots + (X_n - \bar{X})^2 \Big]$$

The question becomes: what is the sum of a bunch of squared normal random variables?

The Standard Normal Squared

Simplify even further:

Let $Z_1, Z_2, Z_3, \cdots, Z_n$ be i.i.d. standard normal random variables: $Z_i \sim \mathcal{N}(0,1)$, then

- $Z_1^2 \sim ?$
- $Z_1^2 + Z_2^2 \sim ?$
- :
- $\sum_{i=1}^{n} Z_i^2 \sim ?$

The Chi-squared (χ^2) Distribution

Friedrich Robert Helmert in 1876:

Number of $oldsymbol{Z}_i^2$	The PDF of the sum
1	$\frac{1}{\sqrt{2\pi}}x^{-\frac{1}{2}}e^{-\frac{x}{2}}:\chi^2(1)$
2	$\frac{1}{2}e^{-\frac{x}{2}}: \chi^2(2)$
3	$\frac{1}{\sqrt{2\pi}}x^{\frac{1}{2}}e^{-\frac{x}{2}}:\chi^2(3)$
4	$\frac{1}{4}xe^{-\frac{x}{2}}:\chi^{2}(4)$
5	$\frac{1}{3\sqrt{2\pi}}x^{\frac{3}{2}}e^{-\frac{x}{2}}:\chi^2(5)$
:	:

by induction:

$$\chi^{2}(n): \mathbf{ff}_{\mathbf{X}}(x) = \frac{1}{\Gamma(\frac{n}{2}) 2^{\frac{n}{2}}} x^{\frac{n}{2} - 1} e^{-\frac{x}{2}}, x \geqslant 0$$

where:

$$\Gamma(\alpha) = \int_0^\infty t^{\alpha - 1} e^{-t} dt, \ \alpha > 0$$
$$\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$$

$$\Gamma(k) = (k-1)!$$
 , when k is an integer

One parameter - the degree of freedom: the number of independent Z^2 in the sum

6/10

The Distribution of S^2

By definition:

$$\sum_{i=1}^{n} \left(\frac{\boldsymbol{X}_i - \mu}{\sigma} \right)^2 \sim \chi^2(n)$$

Replacing μ with \bar{X} :

$$\sum_{i=1}^{n} \left(\frac{\boldsymbol{X}_i - \bar{\boldsymbol{X}}}{\sigma} \right)^2 = \frac{1}{\sigma^2} \sum_{i=1}^{n} (\boldsymbol{X}_i - \bar{\boldsymbol{X}})^2 \sim \chi^2(n-1)$$

Manipulate to get the sample variance:

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

Why n-1? part 1

$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2 \le \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$$

Why? Because:

$$\sum_{i=1}^{n} (x_i - m)^2 = n \cdot m^2 - \left(2\sum_{i=1}^{n} x_i\right) \cdot m + \sum_{i=1}^{n} x_i^2$$

But why exactly n-1? Wait until **part 2** in **Lecture 18**

The Degree of Freedom (DF, DOF, ν)

Typical definition: the number of values in the final calculation of a statistic that are free to vary; the number of independent pieces of information used to calculate the statistic.

There are two types of degrees of freedom:

$$\begin{cases} df \text{ of the data} & -df \text{ left (statistical cash)} \\ df \text{ of the statistical model} & -df \text{ spent (buy with cash)} \end{cases}$$

A statistical model: a mathematical process that attempts to describe the sample data that come from a population, allowing us to make predictions.

Different Types of df

Intuitive thinking: the number of cells that can vary in a Spreadsheet.

	Data	Model
	x_1	
	x_2	$\frac{1}{2}$
	x_3	$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
	:	
	x_n	
df	n	1
	<u> </u>	<u> </u>